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We develop a general theory for variance function estimation, focusing on estimation
of the structural parameters and including most methods in common use in our development.
The general qualitative conclusions are these. First, most variance function estimation
procedures can be looked upon as regressions with rcsponses” being transformations of
absolute residuals from a preliminary fit or sample standar deviations from replicates
at a design point. Ourconclusion-is-that, the former is typically more efficient, but
not uniformly so. Secondly, for variance functlon estimates based on transformatlons of
absolute residuals, we show that efficiency is a monotone function of the efficiency
of the fit from wh1ch the residuals are formed, at least for symmetric errors. Our con-
clusion is that one should iterate so that residuals are based on generalized least
squares. Finally, robustness issues are of even more importance here than in estimation
of a regression function for the mean. The loss of efficiency of the standard method
away from the normal distribution is much more rapid than in the regression problem.cfgr_“

As an example of the type of model and estimation methods we consider, for observation
- covariance pairs (Yi,xi), one may model the variance as proportional to a power of

the mean response, e.g.,
= . = ‘ 6
E(Yi) = f(xi’B): Var(Yi) =0 f\xi)B) ’ f(xibs) > 0’

where f(x.,B) is the possibly nonlinear mean function and 6 is the structural parameter
of interest. 'Regression methods" for estimation of 6 and o based on residuals

~ A .
T, = Yi - f(xi,Bi) for some regression fit B, involve minimizing a sum of squares where

some function T of the lril plays the role of the "responses' and an appropriate function
of the variance plays the role of the "regression function.'" For example, if T(x) 2
the responses would be rf, and the form of the regression function would be suggested

by the approximate fact E (rf) ~ o2 £lx; ,6,)28.

One could weight the sum of squares
appropriately by considering the approx1mate variance of ri. For the case of replication
at each X, some methods suggest replacing the r, in the function T by sample standard

deviations at each X, Other functions T, such as T(x) = x or log x have also been
proposed.
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ABSTRACT

Heteroscedastic regression models are used in fields including
economics, engineering, and the biological and physical sciences. Often,
the heteroscedasticity is modeled as a function of the covariates or the
regression and other structural parameters. Standard asymptotic theory
implies that how one estimates the variance function, in particular the
structural parameters, has no effect on the first order properties of the
regression parameter estimates; however, there is evidence both in practice
and higher order theory to suggest that how one estimates the variance
function does matter. Further, in some settings, estimation of the variance
function is of independent interest or plays an important role in estimation
of other quantities. In this paper, we study variance function estimation
in a unified way, focusing on common methods proposed in the statistical and
other literature, in order to make both general observations and compare
different estimation schemes. We show there are significant differences in
both efficiency and robustness for many common methods.

We develop a general theory for variance function estimation, focusing
on estimation of the structural parameters and including most methods in
common use in our development. The general qualitative conclusions are
these. First, most variance function estimation procedures can be looked
upon as regressions with "responses” being transformations of absolute
residuals from a preliminary fit or sample standard deviations from
replicates at a design point. Our conclusion 1is that the former |is

typically more efficient, but not uniformly so. Secondly, for variance
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function estimates based on transformations of absolute residuals, we show
that efficiency is a monotone function of the efficiency of the fit from
which the residuals are formed, at least for symmetric errors. Our
conclusion is that one should iterate so that residuals are based on
generalized least squares. Finally, robustness issues are of even more
importance here than in estimation of a regression function for the mean.
The loss of efficiency of the standard method away from the normal
distribution is much more rapid than in the regression problem.

As as an example of the type of model and estimation methods we
consider, for observation - covariate pairs (Yi'xi)' one may model the

variance as proportional to a power of the mean response, e.g.,

where f(xi.B) is the possibly nonlinear mean function and 06 1is the
structural parameter of interest. "Regression methods” for estimation of 0

and o based on residuals r, = Yi - f(xi.ﬁ*) for some regression fit B,

involve minimizing a sum of squares where some function T of the Iril plays
the role of the "responses” and an appropriate function of the variance

plays the role of the "regression function.” For example, if T(x) = x2. the

2

i'
2 2 ~ 120

suggested by the approximate fact E (ri) X0 f(xi.B*) . One could weight

responses would be r and the form of the regression function would be

the sum of squares appropriately by considering the approximate variance of

r?. For the case of replication at each X, some methods suggest replacing
the ry in the function T by sample standard deviations at each X, - Other

functions T, such as T(x) = x or log x have also been proposed.
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1. ION :;0':::
Consider a heteroscedastic regression model for observable data Y: RS

2 2
(1.1) I-ZYi = py = f(xi.B); Var (Yi) =0'g (zi.B.G). !
Here, {xi} are the design vectors. B(p x 1) is the regression parameter, f is RLCE
the mean response function, and the variance function g expresses the AR
heteroscedasticity, where {zi) are known vectors, possibly the {xi}. o is an TR

unknown scale parameter, and 6(r x 1) is an unknown parameter. For example,

the variance may be modeled as proportional to a power of the mean:
e -

(1.2) g(zi,ﬂ.e) = f(xi,B) , f(xi.B) > 0. ‘E" X

One might also model the variance as quadratic in the predictors, i.e., % .;::

o g(z,.B.0) = 1+ 8,x, + 6,x° ¥

glzy.7.5) = 11 7 Y%y Qb

or by an expanded power of the mean model, 1i.e., "
%E

0
(1.3) o® g%(z,.8.6) = 8, + 6, £(x,.P) 3, N

Box and Meyer (1986) use g

g(z,.B.0) = exp(zIB). $E_

An important feature of (1.1) is that no assumption about the distribution of :'.-_\
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L the (Yi) has been made other than that of the form of the first two moments.

v’,,"i Models which may be regarded as special cases of (1.1) are used in diverse

Ay fields, including radioimmunoassay, econometrics, pharmokinetic modeling,
! enzyme kinetics and chemical kinetics among others. The usual emphasis is on
estimation of § with estimation of the variances as an adjunct.

;.; The most common method for estimating B is generalized least squares, in
Ly which one estimates g(zi.ﬁ.ﬂ) by using an estimate of 6 and a preliminary

1+ estimate of B and then performs weighted least squares; see, for example,

::E Carroll and Ruppert (1982a) and Box and Hill (1974). This might be iterated,
Es:, with the preliminary estimate replaced by the current estimate of [, a new
:.3‘ estimate of 6 obtained and the process repeated. Standard asymptotic theory as
in Carroll and Ruppert (1982a) or Jobson and Fuller (1980) shows that as long
s as the preliminary estimators for the parameters of the variance function are
fé' consistent, all estimators of P obtained in this way will be asymptotically i

equivalent to the weighted least squares estimator with known weights.

e X
L]

There is evidence that for finite samples, the better one’'s estimate of 0,

Y

:'S: the better one's final estimate of B. Williams (1975) states that "both
s; analytic and empirical studies...indicate that...the ordering of efficiency (of
‘.. estimates of B)...in small samples is in accordance with the ordering by
: efficiency (of estimates of 6)."” Rothenberg (1984) shows via second order
'.*l' calculations that if g does not depend on B, when the data are normally
;::': distributed the covariance matrix of the generalized least squares estimator of
':: B is an increasing function of the covariance matrix of the estimator of 6. -
™ Second order asymptotics provide only a weak justification for studying
:: the properties of variance function estimates. Instead, our thesis is that
;- estimation of the structural variance parameter 6 is of independent interest.
',: In many engineering applications, an important goal is to estimate the error
" made in predicting a new observation; this can be obtained from the variance
N
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function once a suita le estimate of 0 1is available. In chemical and ;Eﬁég
biological assay problems, issues of prediction and calibration arise. In such ':;:"
, problems, the estimator of 6 plays a central role. As motivation for the study i:.(
» of variance function estimation, in Section 2 we discuss the problems of '::::‘
calibration and prediction in the case of heteroscedasticity. For a formal .::E:
) investigation of how the statistical properties of prediction intervals and ‘:’:
calibration constructs such as the minimal detectable concentration will be :;l?;
highly dependent on how one estimates 6; see Carroll, Davidian and Smith ,d:
(1986). In off-line quality control, the emphasis is not only on the mean _‘
response but also on its variability: Box and Meyer (1986) state that "one ‘i‘
distinctive feature of Japanese quality control improvement techniques is the l:::.
use of statistical experimental design to study the effect of a number of "
factors on variance as well as the mean.” The goal is to adjust the levels of .::':
) a set of experimental factors to bring the mean of the responses to some target ‘:‘
. value while minimizing standard deviation; the problem involves simultaneous o
consideration of both mean and variability, where the latter may be a function ;:

of the mean, see Box (1986) and Box and Ramirez (1986). These authors advocate EE
methods based on data transformations to account for the heteroscedasticity in N
'
separating the factors into those affecting dispersion but not location, those '.:_
affecting location but not dispersion, and those affecting neither. One ::'
similarly might employ effective estimation of variance functions in this 2
application. We briefly discuss the relationship between variance function ::‘
v estimation and one type of data transformation in Section 3. Qb
It should be evident from this brief review that far from being only a _‘
. nuisance parameter, the structural variance parameter 6 can be an important :E
part of a statistical analysis. The above discussion suggests the need for a .':l
unified investigation of estimation of variance functions, in particular, \:
estimation of the structural parameter 0. Previous work in the literature )
2
_.
- -. *""."".':"{"a"\‘:‘ . ~. SR \':)};_\‘i}:‘;\-\i\ ;5;:-’::};;\;; ;:\. ;.-




tends to treat various special cases of (1.1) as different models with their
owm estimation methods. The intent of this paper is to study parametric
variance function estimation in a unified way. Nonparametric variance function
estimation has also been studied, see for example Carroll (1982); we will
confine our study to the parametric setting.

Parametric variance function estimation may be thought of as a type of
regression problem in which we try to understand variance as a function of
known or estimable quantities, and in which 6 plays the part of a "regression"
parameter. The major insight which allows for a unified study is that the
absolute residuals from the current fit to the mean or the sample standard
deviations from replicates are basic building blocks for analysis. At the
graphical level, this means that transformations of the absolute residuals and
sample standard deviations can be used to gain insight into the structure of
the variability and to suggest parametric models. For estimation, a major
contribution is to point out that most of the methods proposed in the
literature are (possibly weighted) regressions of transformations of the basic
building blocks on their expected values. Many exceptions to this are dealt
with in this article as well.

Our study yields these major qualitative conclusions. As stated here,

they apply strictly only to symmetric error distributions, but they are fairly

definitive, and one is unlikely to be too successful ignoring them in practice.

(I). Robustness plays a great role in the efficiency of variance function
estimation, probably even greater than in estimation of a mean function. For
example, if the variance does not depend on the mean response, the standard
method will be normal theory maximum likelihood as in Box & Meyer (1986). A
weighted analysis of absolute residuals ylelds an estimator only 12X less
efficient at the normal model which rapidly gains efficiency over maximum

likelihood for progressively heavier-tailed distributions. This slope of
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improvement is much larger than is typical in regression on means. For a
standard contaminated normal model for which the best robust estimators have
efficiency 125% with respect to least squares, the absolute residual estimator
of the variance function has efficiency 200%.

(1I). We obtain implications for fit to the means upon which the
residuals are based. It has been our experience that unweighted least squares
residuals yield unstable estimates of the variance function when the variances
depend on the mean. This is confirmed in our study, in the sense that the
asymptotic efficiency of the variance function estimators is an increasing
function of the efficiency of the current fit to the means. Thus, we suggest
the use of iterative weighted fitting. so that the variance function estimate
is based on generalized least squares residuals. As far as we can tell, this
part of our paper is one of the first formal justifications for iteration in a
generalized least squares context.

(III). It is standard in many applied fields to take m replicates at each
design point, where usually m { 4. Rather than using (transformations of)
absolute residuals for estimating variance function parameters, one might use
the sample standard deviations. We develop an asymptotic theory from which we
obtain the efficiency of this substitution. The effect is typically, although
not always, a loss of efficiency, at least when there are m { 4 replicates.
The clearest results occur when the variance does not depend on the mean.
Normal theory maximum likelihood is a weighted regression of squared residuals;
the corresponding method would be a weighted regression based on sample
variances. Using the latter entails a loss of efficiency, no matter what the
underlying distribution. For normally distributed data, the efficiency is
(m-1)/m, thus being only 50% for duplicates. For other methods, using the

replicate standard deviations can be more efficient. This is particularly true

of a method due to Harvey (1976), which is based on the logarithm of absolute
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residuals. A small absolute residual, which seems to always occur in practice,
can wreak havoc with this method. This is consistent with our influence
function calculations, so that we suggest some trimming of the smallest
absolute residuals before applying Harvey's method.

(IV). Our results indicate that the precision of estimates 6 is
approximately independent of o. Also, in the power of the mean model (1.2},
the efficiency of a regression estimator improves as the relative range of
values of the mean response increases; efficiency depends on the spread of the
logarithms of means, not their actual values. This helps explain why in
assays, estimating variances is typically much harder than estimating means.

In Section 2 we discuss the prediction and calibration problems as a
motivating example of a situation in which variance function estimation is of
key importance. In Section 3 we describe a number of methods for estimation of
6. VWe do not discuss robust methods, see Giltinan, Carroll and Ruppert (1986).
In Section 4 we present an asymptotic theory for a general estimator of 6 whose
construction encompasses the methods of Section 3. Section 5 contains examples
of specific applications of our theory and a discussion of the implications of

our formulation. Sketches of proofs are presented in Appendix A.

2. AN EXAMPIE: THE ROLE OF VARIANCE ESTIMATION IN PREDICTION AND
CALIBRATION PROBLFMS

One example in which heterogeneity of variation occurs is in calibration
experiments in the physical and biological sciences. in which one fits a model
such as (1.1) to a sample {yi.xi). i =1,...,N. The {xi) may be concentrations
of a substance and the (yi) counts or intensity levels which vary with

concentration. The interest lies in using the estimated regression to make
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inference about a pair {yo.xo) which is independent of the original data set.
One may wish to obtain point and interval predictors for Y, in the case X, is
known (prediction) or estimate X in the case Yo only is known (calibration),
see Rosenblatt and Speigelman (1981). As a motivating example for considering
estimation of variance functions as an independent problem, we describe the
primary role of form and estimation of the variance function in construction of
prediction/calibration intervals in the case of heteroscedasticity.

Throughout this discussion assume X, =z, so that we may write the

variance function as g(xi.B.B), and assume that the data are approximately
normally distributed. Given X, the standard point estimate of the response Yo
is f(xo,B), vhere E is some estimate for B. For any consistent estimator B of
B. under (1.1) the variance in the error made by the prediction is, for large
sample sizes, var(yo - f(xo.ﬁ)} X 02 gz(xo,B.e). so that the error in
prediction is determined mainly by the variance function 02 g2(xo.ﬁ.9) and not
the original data set itself. An approximate (1-a)100% confidence interval for
Y, is I(xo) = { all y in the interval f(xo.a) p S t?:g/z ; g(xo,é.a) }. here

N-p is the (1-a/2) percentage point of the t distribution with (N-p) degrees

‘1-as2
of freedom, and o0 and 6 are estimates. If the parameters are estimated by a
weighted analysis such as generalized least squares assuming (1.1), all
estimates are consistent and the prediction interval becomes
~ N-p

(2.1) I(xo) X { all y in the interval f(xo.ﬁ) 1 tias2 © g(xo.ﬁ.ﬂ) }.

If one were to ignore the heterogeneity, the interval would be given by IU(xo)
= { all y in the interval f(xo.ﬁ) i tT:Z/Z o }. For an unweighted analysis,
however, 02 would be estimated by the unweighted mean squared error a% X 02

N3 g2(xi.B.B) = o= gﬁ for large N. Thus, the unweighted prediction interval

satisfies
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. Figure 1.

)

. Approximate form of prediction intervals for a
¢ linear mean response function based on

X unweighted (ignoring heteroscedasticity) and
0 weighted (as in (1.1)) regression fits.
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Figure 2.

Approximate form of calibration confidence intervals
for a linear mean response function based on
unweighted (ignoring heteroscedasticity) and

weighted (as in (1.1)) regression fits.
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(2.2) IU(xo) % { all y in the interval f(xo.B) £ 4 tl-g/2 o gy }-

Comparing (2.1) and (2.2), we see that where the variability is small,
and conversely

unweighted interval will be too long and hence pessimistic,

where the variance is large. Figure 1 illustrates a typical case of this

phenomenon for the simple situation of an approximately linear mean response
function where variability increases with mean response.

The situation is the same for calibration. For simplicity in discussing

calibration, assume f(x.B) is strictly increasing or decreasing in x. Given

£(x.B).

|
|
|
|
\
|
I
l Yo' the usual estimate of X, The common
confidence interval for X, is the set of all x values for which Yo falls in the

is that value satisfying Yo =
prediction interval I(x): this interval is actually a (1-a)100X confidence
Again, the effect of not weighting is intervals

which are too long for X, where the variance is small and the opposite when the

interval for the unknown xo.

variance is large. We are not familiar with any extensive investigation of

calibration confidence 1intervals for heteroscedastic models, although see

Watters, Carroll and Spiegelman (1987). Figure 2 represents an example of this

phenomenon in the situation of Figure 1 for the region of small variance.

The key point of this discussion is that when heterogeneity of variance is
present, how well one models and estimates the variances will have substantial
impact on prediction and calibration based on the estimated mean response,
since the form of the intervals depends on the form of the variance function.

Some theoretical work has been done verifying the implications of this

discussion; for an investigation of how the statistical properties of

estimators for calibration quantities depend on those of the estimator 6, see

Carroll, Davidian and Smith (1986) and Carroll (1987).
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3. ESTIMATION OF 0 ;

We now discuss the form and motivation for several estimators of 8 in

(1.1). In what follows, let B, be a preliminary estimator for B. This could X
) be unweighted least squares or the current estimate in an iterative reweighted R
least squares calculation. Let e, = {Y1 f(xi,B))/(og(zi.B.e)) denote the .
errors so that E ¢, = O and E e? = 1, and denote the residuals by r, =Y, .
f(xi.B*). We consider some methods requiring m, 2 2 replicates at each of M R
design points; for simplicity, we consider only the case of equal replication .
“
m, = m and write in obvious fashion {YU}' j =1,...,m, to denote the m N
observations at Xy where appropriate, so that N = Mm is the total number of N
~
observations. In this case, let ?i_ and s, denote the sample mean and standard j'{
~
deviation at X - For consistency of exposition, however, we denote the sum )
over all observations as oy
y
2!:___1 instead of 2’1':1 2";___1. 3
When we speak of replacing absolute residuals (Iril} by sample deviations {si} -
in the case of replication, Iril or s, appears m times in the sum. :
D
e
3.1 Regression Methods o
=
- y
Pseudo-likelihood. Given B,: the pseudo-likelihood estimator maximizes j
the normal log-likelihood €(B_,0.0), where :,'
K
» .-F
(3.1) £(B.0.0) = N log o - T,_ log{g(z,.5.0)) :
1 ]
-(za)z"l(v ~£(x,.8)Y2/g%(z,.5.9). ;
()
N
~3
see Carroll and Ruppert (1982a). Here the term "pseudo-likelihood” is used as N
3
[ ]
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in Gong and Samaniego (1981). Generalizations of pseudo-likelihood for robust
estimation have been studied by Carroll and Ruppert (1982a) and Giltinan, o

. Carroll and Ruppert (1986). ‘

X KRR

east squares on squared residuals. Besides pseudo-likelihood, other

- W O W s

methods using squared residuals have been proposed. The motivation for these )

) methods 1is that the squared residuals have approximate expectation :
o°g%(z,.B.0). see Jobson and Fuller (1980) and Amemiya (1977). This suggests a ,

E nonlinear regression problem in which the 'responses” are (r?) and the '
' "regression fu~~tion” is a2g2(zi.§*.e). The estimator 8SR minimizes in 6 and o '}
2':=1 (rf - 0232(21.[;*.9)}2. N

;
l! For normal data the squared residuals have approximate variance a4g4(zi.B.9): :
: in the spirit of generalized least squares, this suggests the weighted -
' estimator which minimizes in 6 and ¢ A
(3.2) N1 02 - %Pz, 5,00 /e (25,8, 3

where 8* is a preliminary estimator for 6. BSR for example. Full {teration, :

when it converges, would be equivalent to pseudo-likelihood. i

Accounting for the effect of leverage. One objection to methods such as

R P

pseudo-likelihood and least squares based on squared residuals is that no .}
compensation is made for the loss of degrees of freedom associated with . "':"
preliminary estimation of p. For example, the effect of applying
pseudo-likelihood directly seems to be a bias depending on p/N. For settings :
such as fractional factorials where p is large relative to N this bias could be !
substantial. ::
Bayesian ideas have been used to account for loss of degrees of freedom: ;.:

2

WCn &‘(' f\' I_‘\'-\. bS', \f' 1.'" l'\'f'q,v-'s,f-_-“.'l‘%"\,v_vt LR G R U T S S A S S i R .-..'.\ AN N WL N e AEATAL
- SN AC N AN A I AN N O N A A R A A A A N A AR A AN N RN g )
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11
see Harville (1977) and Patterson and Thompson (1974). When g does not depend 5:
on B, the restricted maximum likelihood approach of the latter authors suggests ?*:
in our setting one estimate 6 from the mode of the marginal posterior density 2:
g for 6 assuming normal data and a prior for the parameters proportional to a-l. S:,

Vhen g depends on B, one may extend the Bayesian arguments and use a linear »

approximation as in Box and Hill (1974) and Beal and Sheiner (1986) to define a i:
restricted maximum likelihood estimator. ;E.

Let Q be the N x p matrix with ith row fp(xi.B)t/g(zi.B.B). where fﬁ(xi'B) i:
= 8/8f {f(x;.B)}. and let H = Q(QtQ)ngt be the "hat” matrix with diagonal E{‘
element hii= hii(B’e): the values (hii} are the leverage values. It turns out E:T
that the restricted maximum likelihood estimator is equivalent to an estimator *?
obtained by modifying pseudo-likelihood to account for the effect of leverage. ;i
This characterization, while not unexpected, is new; we derive this estimator gf
and its equivalence to a modification of pseudo-likelihood in Appendix B. ;5

. The least squares approach using squared residuals can also be modified to

show the effect of leverage. Jobson and Fuller (1980) essentially note that

2

for nearly normally distributed data we have the approximations

RN

2. 2. 2
E r{ ® 0°(1-h,,)&%(z,.B.6).
2., 4, . .24
var ry' ¥ 2 0 (1 hii) g (zi.B.G).

NIRRT

To exploit these approximations modify (3.2) to minimize in 6 and o

2 2 2 A 2 252 4 PO -

(3.3) 5.y (2 - P0-hy ez, ., 0/ ((1-h, )8 (2, .B,.6,)).

~

where h = h (B,.0,) and 8. is a preliminary estimator for 6. An o
it 11479 "¢ »* ®

asymptotically equivalent variation of this estimator in which one sets the v:

s

- ah

derivatives of (3.3) with respect to 6 and 0 equal to O and then replaces 8, by :Q

o

- \
N
®
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8 can be seen to be equivalent to pseudo-likelihood in which one replaces
standardized residuals by studentized residuals. While this estimator also
takes into account the effect of leverage, it is different from restricted
maximum likelihood.

Least squares on absolute residuals. Squared residuals are skewed and

long-tailed, which has lead many authors to propose using absolute residuals to

estimate 6; see Glejser (1969) and Theil (1971). Assume that
ElY, - £(x;.B)| = m&(z;.B.0).

which 1is satisfied if the errors {ei} are independent and identically
distributed. Mimicking the least squares approach based on squared residuals,

one obtains the estimator 8AR by minimizing in n and 0
5, {lr,] - me(z, B,.0))°
1=1 VUTgl = TBLZy P .
In analogy to (3.2), the weighted version is obtained by mimimizing
~ 2 2 ~ ~
5, (I, | - ne(z,.5,.0))/8%(z,.B,.6,).

where 8* is a preliminary estimator for 6, probably SAR. As for least squares
estimation based on squared residuals, one presumably could modify this
approach to account for the effect of leverage.

Logarithm method. The suggestion of Harvey (1976) is to exploit the fact
thut the logarithm of the absolute residuals has approximate expectation log
{ag(zi.B.O)). Estimate 0 by ordinary least squares regression of log |ri| on
log (ag(zi.a ,0)}, since if the errors are independent and identically

distributed, the regression should be approximately homoscedastic. If one of
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o

the residuals is near zero the regression could be adversely affected by a "::

large "outlier,” hence in practice one might wish to delete a few of the ::(

smallest absolute residuals, perhaps trimming the smallest few percent. Q;

: 5
3.2 Other methods '!l."

: o)
Besides squares and logarithms of absolute residuals, other E‘" :

transformations could be used. For example, the square root and 2/3 root would '

typically be more normally distributed than the absolute residuals themselves. :;

Such transformations appear to be useful, although they have not been used much E‘:

to our knowledge. Our asymptotic theory applies to such transformations. :‘

In a parametric model such as (1.1)., joint maximum likelihood estimation :3

is possible, where we use the term maximum likelihood to mean normal theory ;

. .‘.:..

maximum likelihood. When the variance function does not depend on B, it can be

- easily shown that maximum likelihood is asymptotically equivalent to weighted RO

least squares methods based on squared residuals. In the situation in which .

the variance function depends on B this is not the case. In this setting, it -\1-'
has been observed by Carroll and Ruppert (1982b) and McCullagh (1983) that :x
while maximum likelihood estimators enjoy asymptotic optimality when the model ;E
and distributional assumptions are correct, the maximum likelihood estimator of :.
B can suffer problems under departures from these assumptions. This suggests ::!:
that joint maximum likelihood estimation should not be applied blindly in :\:E
: practice. The theory of the next section shows the asymptotic equivalence of N
maximum likelihood with other methods in a simplifying special case. Based on .\
this theory, we tend to prefer weighted regression methods even when the data E
are approximately normal for reasons of relative computational simplicity. i.l
While we have chosen to describe the methods of Section 3.1 as "regression
methods," asymptotically equivalent versions of such methods may be derived by E}_
Q)
®
N
-\.*:' RSN NEACNNG DO AENEAT AT AT .-'\\. SN \\.\-\\,\.\_u};_g
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considering maximum likelihood assuming some underlying distribution. For
example, the form of the weighted squared residuals method is that of normal
theory maximum likelihood with [ known and 8* replaced by 6
(pseudo-likelihood): the form of the weighted absolute residual method is that
of maximum likelihood assuming B known and 6* replaced by 6 under the double
exponential distribution. Thus, what we term a regression method may be viewed
as an approximation to maximum likelihood assuming a particular distribution.
We feel that the regression interpretation is a much more appealing and natural
motivation, since no particular distribution need be considered to obtain the
form of the estimators, only the mean-variance relationship.

Another joint estimation method is the extended quasi-likelihood of Nelder
and Pregibon (1987) also described in McCullagh and Nelder (1983). This
estimator is based on assuming a class of distributions "nearly” containing
skewed distributions such as the Poisson and gamma. While it may be viewed as
iteration between estimation of @ and o0 and generalized least squares for B,
technically this scheme does not fit in the general framework of the next
section; an asymptotic theory has been developed elsewhere, see Davidian and
Carroll (1987). A related formulation is given by Efron (1986).

Methods requiring replicates at each design point have been proposed in
the assay literature. These methods do not depend on the postulated form of
the regression function; one reason that this may be advantageous is that in
many assays along with observed pairs (Yij'xi) there will alsc be pairs in
which only Yi is observed. A popular and widely used method is that of

J
Rodbard and Frazier (1975). If we assume

(3.4) 8(21-3-9) = g(ui.zi.e).

as in, for example, (1.2) or (1.3), the method is identical to the logarithm

"'}"';r";{':"‘.}-":-‘a R o e P A T b T T T T T T S R e
0 . = .r"a".-"f"d‘ \"-,.:\..'\. .'_-..’- - o A » '4-\1- y R .._\J_ > ".r\(*.-"}".,-\.-
. " n LYY ..'Lgﬁ'i' A T T T N L U S S S R A A L N S WA U M,
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method previously discussed except that one replaces Iril by the sample
standard deviation sy and f(xi.B*) in the "regression” function by the sample
mean ?}.. As a motivation for this and the method of Harvey, consider that
under (1.2) 0 is simply the slope parameter for a simple linear regression.

As an alternative, under the assumption of independence and (3.4)., the
modified maximum likelihood method of Raab (1981) estimates 6 by joint

maximization in the (M+r+l) parameters az.e.ul.....uu of the "modified” normal

likelihood
(3.5) Ty, (2no%e%(n,.2,.00) " ) Zexpl-3]_ (¥, ;1) ?/(20°6°(u; 2, . 0))]

The modification serves to make the estimator of o unbiased. The idea here is
to improve upon the regression method of Rodbard by appealing to a maximum
likelihood approach which, despite a parameter space increasing as the number
of design points, is postulated to have reasonable properties. A related
method is that in which 6 and o are estimated by maximizing (3.5) with By
replaced by ?;.. the motivation being computational ease and evidence that this
estimator may not be too different from that of Raab in practice, see Sadler
and Smith (1985).

Table 1 contains a summary of some of the common methods for variance

function estimation and their formulations.

4. AN ASYMPTOTIC THEORY OF VARIANCE FUNCTION ESTIMATION

In this section we construct an asymptotic theory for a general class of

regression-type estimators for 8. Since our major interest lies in obtaining

general insights, we do not state technical assumptions or details. In what
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follows, in the case of replication N - ® in such a way that m remains fixed.
The reader uninterested in this development may wish to skip to Section 5,

where conclusions and implications of the theory are presented.

4.1 Methods based on transformations of absolute residuals

Write d () = hri - f(xi.ﬁ)l. Let T be a smooth function and define M, by
M;(n.0.8) = E [ T{d,(B)} 1.

where 1 is a scale parameter which is usually a function of o only. Ve

consider estimation of the more general parameter 7 instead of o itself for

ease of exposition, and since o is estimated jointly with 8 in regression

models, our theory focuses on expansions for 1 and 6 jointly. If ;*. 8* and B*

are any preliminary estimators for 7, 6, and B, define a and 8 to be the

solutions of

(4.1) N2 3 H (1.0.8,) {T(d,(B,)} - M (n.0.5,)} / V,(n.8,.B,) = O,

where Vi(n.B.B) is a smooth function and Hi is a smooth function which for the
estimators of Section 3 is the partial derivative of Mi with respect to (n.9).
In what follows, we suppress the arguments of the functions Hi' Vi. etc. when
they are evaluated at the true values 7, 6, and B. Specific examples are
considered in the next section.

The class of estimators solving (4.1) includes directly or includes an
asymptotically equivalent version of the estimators of Section 3.1. For
methods which account for the effect of leverage, Mi' V1 and Hi will depend on

the h“. In this case we need the additional assumption that if h = max (h“).

then N 1/2h converges to zero.
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Theorem 4.1. Let Ty 9* and ﬁ* be N consistent for estimating n, 6 and B.

Let T be the derivative of T and define

c, = H, [T{d,(B)} - M,;] / V,:
-1 t
B, n=N 2?:1 HH Vs

-1
By y = N '3, (H/V,) 8/3B {M (n.6.5)}:

By y = N 12y, (H/V)Eg(x,.B) E [T{d,(B)}stgn(e)].

Then, under regularity conditions as N - o,

Y2(B,-8) + 0 (1). O

12| "
(4.2) B; \ N [3 o N'B3 N N

-7 -
]:Nl/zz" c, + (B
6 i=1

Ve may immediately make some general observations about the estimator 8
solving (4.1). Note that if the variance function does not depend on B, then
Mi does not depend on B and hence B2.N = 0. For the estimators of Section 2.1,
T is an odd function. Thus, if the errors {ei) are symmetrically distributed,

E[ I:[i{di(B)}sign(ei) ] = 0 and hence B, , = 0.

3.N

Corollary 4.1(a). Suppose that the variance function does not depend on 8 and

the errors are symmetrically distributed. Then the asymptotic distributions of

the regression estimators of Section 3.1 do not depend on the method used to

obtain B*. If both of these conditions do not hold simultaneously, then the
asymptotic distributions will depend in general on the method of estimating J.
a

The implication is that in the situation for which the variance function

does not depend on  and the data are approximately symmetrically distributed,

for large sample sizes the preliminary estimator for B will play little role in
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determining the properties of 6. Note also from (4.2) that for weighted

methods, the effect of the preliminary estimator of 6 is asymptotically
negligible regardless of the underlying distributions.

The preliminary estimator E* might be the unweighted least squares
estimator, a generalized least squares estimator or some robust estimator.
See, for example, Huber (1981) and Giltinan, Carroll and Ruppert (1986) for
examples of robust estimators for 8. For some vectors {VN.i)' these estimators

admit an asymptotic expansion of the form
1/2 ~ -1/72
(4.3) (B, - B) = N3] ¥(vy eg) + 0 (1)

Here ¥ is odd in the argument e. In case the variance function depends on B,
B2 N # 0 in general; however, if the errors are symmetrically distributed and
B* has expansion of form (4.3), then the two terms on the right-hand side of

(4.2) are asymptotically independent. The following is then immediate.

Corollary 4.1(b). Suppose that the errors are symmetrically distributed and
that B has an asymptotic expansion of the form (4.3). Then for the estimators
of Section 3.1, the asymptotic covariance matrix of 6 1is a monotone

nondecreasing function of the asymptotic covariance matrix of B*. o

By the Gauss-Markov theorem and the results of Jobson and Fuller (1980)
and Carroll and Ruppert (1982a), the implication of Corollary 4.1(b) is that
using unweighted least squares estimates of B will result in inefficient
estimates of 8. This phenomenon is exhibited in small samples in a Monte Carlo
study of Carroll, Davidian and Smith (1986). If one starts from the unweighted
least squares estimate, one ought to iterate the process of estimating 6 -- use

the current value B to estimate 6 from (4.1), use these §_ and 8 to obtain an

9
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updated ﬁ* by generalized least squares and repeat the process € - 1 more
times. It is clear that the asymptotic distribution of 6 will be the same for
€ 2 2 with larger asymptotic covariance for € = 1, so in principle one ought to
- iterate this process at least twice. See Carroll, Wu and Ruppert (1987) for

more on iterating generalized least squares.

4.2 Methods based on sample standard deviations

Assume replication, and as before let {si} be the sample standard
deviations at each X, which themselves have been proposed as estimators of the
variance in generalized least squares estimation of B. This can be
disasterous, see Jacquez, Mather and Crawford (1968). When replication exists,
however, practitioners feel comfortable with the notion that the (si} may be
used as a basis for estimating variances: thus, one might reasonably seek to
estimate 6 by replacing di(B*) by s; in (4.1).

The following result is almost immediate from the proof of Theorem 4.1 in
Appendix A.

Theorem 4.2. If di(ﬁ*) is replaced by s, in (4.1), then under the conditions

i
of Theorem 4.1 the resulting estimator for 0 satisfies (4.2) with 83 N = 0 and

the redefinitions

(4.4a) C

(H/V,){T(s,) - M }:

(4.4b) M E (T(si)) = Mi(n.B.B). o

If the errors are symmetrically distributed, then from (4.2) and Theorem
4.2, whether one is better off using absolute residuals or sample standard

deviations in the methods of Section 3.1 depends only on the differences
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between the expected values and variances of T(di(B)) and T(si). In Section 5
we exhibit such comparisons explicitly and show that absolute residuals can be

preferred to sample standard deviations in situations of practical importance.

4.3 Methods not depending on the regression function

We assume throughout this discussion that the variance function has form
(3.4) and replication is available. From Section 3.1 we see that the
"regression function” part of the estimating equations depends on f(xi.l;*). so
that in the general equation (4.1) Hi‘ Vi and Hi all depend on f(xi.a*). In
some settings, one may not postulate a form for the By for estimating 6; the

method of Rodbard and Frazier (1975), for example, uses s, in place of di(ﬁ*)

i
as in Section 4.2 and replaces f(xi.ﬁ*) by the sample mean ?i"

We now
consider the effect of replacing predicted values by sample means for the
general class (4.1).

The presence of the sample means in the variance function in (4.1)
requires more complicated and restrictive assumptions than the usual large
sample asymptotics applied heretofore. The method of Rodbard and Frazier and
the general method (4.1) with sample means are functional nonlinear errors in
variables problems as studied by Wolter and Fuller (1982) and Stefanski and
Carroll (1985). Standard asymptotics for these problems correspond to letting

/72

O go to zero at rate N_1 In Section 4.4 we discuss the practical

implications of o being small; for now, we state the following result.

Theorem 4.3.. Suppose that we replace f(xi.Bn) by ?1. in Mi' V1 and Hi in
(4.1) and adopt the assumptions of Theorems 4.1 and 4.2. Further, suppose that
as N 9o, g -0 simul taneously and

(1) N2 4, 0 (A < w;
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3
(11) N1/22':=1 C, has a nontrivial asymptotic normal limit distribution; :
(111) The (61) are symmetric and 1.1.d :
(iv) (Wi- - "il / 0)2 has uniformly bounded k moments, some k > 2. El
'\
. :
Then the results of Theorems 4.1 and 4.2 hold with B2.N = BB.N 0. O <
This result shows that under certain restrictive assumptions. one may ,5‘
replace predicted values by sample means under replication; however, it is "
important to realize that the assumption of small o is not generally valid and :a-
hence the use of sample means may be disadvantageous in situations where these :..':
asymptotics do not apply. Further, relaxation of assumption (iii) will result \'
in an asymptotic bias in the asymptotic distribution of the estimator not !
present for estimators based on residuals regardless of the assumption of "\
symmetry; see Appendix A. :
The estimator of Raab (1981) discussed in Section 3.2 is also a functional -
nonlinear errors in variables estimator, complicated by a parameter space with _
size of order N. Sadler and Smith (1985) have observed that the Raab estimator .
is often indistinguishable from their estimator with By replaced by ?i- in .
(3.5): such an estimator is contained in the general class (4.1). Davidian '::
(1986) has shown that under the asymptotics of Theorem 4.3 and additional 0‘
regularity conditions that the two estimators are asymptotically equivalent in _:_
an important special case. We may thus consider the result of Theorem 4.3 :
relevant to this estimator. :.
4.4 Small o asymptotics
In Section 4.3 technical considerations forced us to pursue an asymptotic
theory in which o is small. It turns out that in some situations of practical
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3

importance these asymptotics are relevant. In particular, in assay data we .
have observed values for o which are quite small relative to the means. Such .:.
asymptotics are used in the study of data transformations in regression. It is l‘
thus worthwhile to consider the effect of small o on the results of Sections _' ::.:
4.1 and 4.2 and to comment on some other implications of letting o = O. :::
In the situation of Theorem 4.1, if the errors are symmetrically . ."
distributed, then for the estimators of Section 3.1, if 0 - 0 as N = ®, then %
there is no effect for estimating the regression parameter 8. In the situation :'t
of Theorem 4.2, the errors need not even be symmetrically distributed. The by
major insight provided by these results is that in certain practical situations §
in which o is small, the choice of 3* may not be too important even if the e
variance function depends on B. :
Small o asymptotics may be used also to provide insight into the behavior "‘g

of other estimators for 6 which do not fit into the general framework of (4.1). §
It can be shown that the extended quasi-likelihood estimator need not _
necessarily be consistent for fixed o, but if one adopts the asymptotics of the :';
previous section, this estimator is asymptotically equivalent to regression T..
estimators based on squared residuals as long as the errors are symmetrically :
distributed. Otherwise, an asymptotic bias results which may have implications *.
for inference for 8. For discussion see Davidian and Carroll (1987). r:':
The small o assumption also provides an illustration of the relationship Ry
between variance function estimation and data transformations. Let &(y.A) = E:
(y}‘ - 1)/A. and consider the model . :\
2

(4.5) E{ e(Yi,A) } = & f(xi.ﬁ).k }; var{ e(Yi.?\ } = o ;E

such "transform both sides" wodels are proposed and motivated by Carroll and

SO

Ruppert (1984). For o % O, E(Yi) X f(xi.ﬁ) and var(Yl) A f(xi.




23

that in (1.2) we have 6 * 1 - A, Thus, when the small o assumption is

relevant, (4.5) and (1.1), (1.2) represent approximately the same model.

S. APPLICATIONS AND FURTHER RESULTS

In Section 4 we constructed an asymptotic theory for and stated some
general characteristics of regression-type estimators of 8. In this section we
use the theory to exhibit the specific forms for the various estimators of
Section 3 and compare and contrast their properties. In our investigation we
rely on the simplifying assumptions implied by the theory of Section 4 —in
particular the small o asymptotic approach in which ¢ - 0 as N - o,
Throughout, define v(1,8.68) = log g(zi.B.O). let ve(i.B.G) be the column vector
of partial derivatives of v with respect to 0, let £(B.8) be the covariance
matrix of ue(i.B.B). and let 7(1.8,08) = { 1, v;(i.B.O))t. For simplicity,
assume that the errors (ei) are independent and identically distributed with
kurtosis x; x = O for normality.

AN

5.1 Maximum likelihgod, pseudo-likelihood, restricted maximum likelihood and
weighted squared residuals.

Writing n = log o, we have T(x) = x2. Mi = exp(2n) g2(zi.B.9). Vi = Hf H:

oM /8(n.6")"and E [ T(d,(B)) sign(e;) 1 =2E [ Y, - £(x,.5)] = O so that

By y = O regardless of the underlying distributions. If h =0 such that N'/%
- O for methods accounting for the effect of leverage. then all of these
methods admit an expansion of the form (4.2) with B3 N = 0. The expansion will

be different depending on whether B_ is a generalized least squares estimator
»

for B or full maximum likelihood, since the maximum likeihood estimator has an
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expansion quadratic in the errors while that of the generalized least squares

estimator is linear in the (ei}. see Carroll and Ruppert (1982b). The

implication is that regression methods based on iterated weighted squared

residuals and full maximum likelihood are different in general asymptotically.

Regardless of the underlying distributions, for fixed o, Davidian (1986) has

shown that the asymptotic covariance matrix of the former methods increases

without bound as a function of o while that of maximum likelihood remains

bounded for all o. Further, a simple comparison of the two covariances reveals

that under reasonable conditions maximum likelihood has smaller asymptotic

covariance as long as x { 2. While these facts may suggest a preference for

full maximum likelihood even away from normality, the computational and model

robustness considerations mentioned earlier may make this preference tenuous.

Generalized least squares and maximum likelihood estimators for B both satisfy
/2

any LY L.

B”-ﬁ = Op(aN-1 ). so that if 0 - O or g does not depend on B, then 6 is

asymptotically normally distributed with mean 8 and covariance matrix

(5.1) (2 + k) {4N E(B.8)} L.

As mentioned in Section 3, under the small o asymptotics of Theorem 3.3,

the extended quasi-likelihood estimator of 0 is asymptotically equivalent to

the estimators here with asymptotic covariance matrix (5.1). Thus, if g does

not depend on B or o = 0, pseudo-likelihood, weighted squared residuals,

extended

if o = 0,

restricted maximum likelihood, maximum likelihood and,

quasi-likelihood, are all asymptotically equivalent. In addition, all of these

estimators have influence functions which are linear in the squared errors,

indicating substantial nonrobustness.

these methods are preferable to unweighted

We may also observe that

regression on squared residuals. Write (5.1) as

----------------
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(5.2) (172 + x/4) (W lwyL,

where V is the N x N diagonal matrix with elements V1 and W is the N x p matrix

with ith

rovw H;. For the unweighted estimator based on squared residuals,
calculations similar to those above show that the asymptotic covariance matrix

when either g does not depend on B or 0 -+ 0 is given by
ty~l, ot ty—1
(5.3) (172 + x/4) (W'W) (WVW)(W'W) .

The comparison between (5.2) and (5.3) is simply that of the Gauss-Markov

theorem, so that (5.2) is no larger than (5.3).

5.2 Logarithms of absolute residuals and the effect of inliers

We do not consider deletion of the few smallest absolute residuals. Here
T(x) = log x so that T(x) = x-l. Letting n = log 0 and assuming independent
and identically distributed errors we have Hi =n + v(i.B.06) + E log le]. Vi =
1, and Hi = 7(1,8.6). Under the assumption of symmetry of the errors, with g
not depending on B or o = O, tedious algebra shows that 8 is asymptotically

normally distributed with mean 6 and covariance matrix

(5.4) var {log ([e|?)} (4N E(B.0)) 7 .

The influence function for this estimator is linear in the logarithm of the
absolute errors. This indicates nonrobustness more for inliers than for
outliers, which at the very least is an unusual phenomenon. If the errors are

not symmmetric then there will be an additional effect due to estimating B not

---------------
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present for the methods of Section 5.1, even if g does not depend on f.

5.3 VWeighted Absolute Residuals

v T - -

Assume that the errors are independent and identically distributed and let
exp(n) = oE|e|. Consider the weighted estimator. We have T(x) = x. 'i‘(x) =1, :
Hi = exp(n) g(zi.B.G) and V1 = Hf Thus, if the errors are symmetrically

distributed and either g does not depend on 8 or o - 0, 6 is asymptotically

normally distributed with mean 6 and covariance matrix h
ﬁ
'
-1
(5.5) {67(1 - 6)} {N E(B.6)} " !
?
!
'
!
where 6 = var |e|. The influence function for this estimator is linear in the X

absolute errors. By an argument similar to that at the end of Section 5.1, we

may conclude that when the effect of B* is negligible one should use a weighted .o
estimator and iterate the method. E'
5.4 General transformations N
LY

~

“

)

One may also consider other power transformations of absolute residuals. N

If A\ # O is the power of absolute residuals on which the regression is based, .

A

then define n by exp(An) = ak E(Iel)‘) and T(x) = x . Then "1 = exp(An) ’

g)‘(zl.B.G). Vi = Hf Straightforward calculations show that if the errors are
symmetric and either g does not depend on B or o = O, then 6 is asymptotically

normally distributed with mean 6 and asymptotic covariance matrix

A A2 2 -1
(5.6) [var ( |e]™) 7 { E (|e]®)® }] ( \* N §(B.6) } .
R A A N N L A N N I S P A P P SO R SRR N N A O oy R PN Ol S -
O e e ey e e e e e S e L I A
. . N 3 3 ~ ! 0 . R )
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with influence function linear in |e|>‘. For square root transformations, for
example, A = 1/2, and from (5.1) and (5.6), the asymptotic relative efficiency
of the square root transformation relative to pseudo-likelihood under normal
errors 1is 0.693: from (5.5), the efficiency relative to weighted absolute
residuals is 0.791.

At this point it is worthwhile to mention that under the simplifying
assumptions of our discussion, the precision of general regression estimators
does not depend on o, since a general expression such as (5.6) is independent
of 0. Thus, how well we estimate 6 in many practical cases will be
approximately independent of o. Furthermore, when the power of the mean model
for variance (1.2) holds, ve(i.B.B) = log M. SO that £(B.6) is the limiting
variance of the {log ui). From the general expression (5.6), the precision
with which one can estimate 6 depends only on the relative spread of the mean
responses, not their actual sizes, and clearly this spread must be fairly
substantial so that the spread of the logarithms of the means will be so as
well. The implications are that for (1.2), the design will play an important
rolie in efficiency of estimation of 6, and in some practical situations we may

not be able to estimate 0 well no matter which estimator we employ.

5.5 Comparison of methods based on residuals

We assume that the errors are symmetric and independent and identically
distributed and that either g does not depend on B or o is small. By (5.1).
(5.4) and (5.5), the asymptotic relative efficiency of the three methods
depends only on the distribution of the errors. For normal errors, using
absolute residuals results in a 12X loss in efficiency while for standard
double exponential errors there is a 25X gain in efficiency for using absolute

residuals. For normal errors., the logarithm method represents a 59X loss of
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5

:‘. efficiency with respect to pseudo-likelihood.

‘:, In Table 2 we present asymptotic relative efficiencies for various
.;‘,' contaminated normal distributions. The asymptotic relative efficiency of the
',:‘: weighted absolute residual method to pseudo-likelihood is the same as the
::: asymptotic relative efficiency of the mean absolute deviation with respect to
::l the sample variance for a single sample, see Huber (1981, page 3): the first
.E. column of the table is thus identical to that of Huber. The table shows that
::: while at normality neither the absolute residuals nor the logarithm methods are
E:: efficient, a very slight fraction of "bad"” observations is enough to offset the
:" superiority of squared residuals in a dramatic fashion. For example, just two
.t: bad observations in 1000 negate the superiority of squared residuals. If 1% or
B 5X of the data are "bad,” absolute residuals and the logarithm method,
::: respectively, show substantial gains over squared residuals. The implication
:: is that while it is commonly perceived that methods based on squared residuals
¥ are to be preferred in general. these methods can be highly non-robust. Our
' formulation includes this result for maximum likelihood, showing its inadequacy
!q under slight departures from the assumed distributional structure. We also
v, include asymptotic relative efficiencies for appropriately weighted residual
' methods based on square, cube and 2/3 roots to pseudo-likelihood using (5.6)
» and observe that these methods also exhibit comparative robustness to
0 contamination.

:

g '

N 5.6 Methods based on le standard deviations

3

§ Assume that m 2 2 replicate observations are available at each design
1 point. In practice, m is usually small , see Raab (1981). We compare using
‘.E absolute residuals to using sample standard deviations in the estimators of
\

Section 3.1. We assume that one is fairly confident in the postulated form of

)
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the model, thus viewing methods based on sample standard deviations as not
taking full advantage of the information available. For simplicity, assume
that the errors are independent and identically and symmetrically distributed
and that either g does not depend on B or ¢ is small. If the errors are not
symmetric and o is not small or the variance depends on B, using sample
standard deviations presumably will be more efficient than in the discussion
below. This issue deserves further attention.

Let si be the sample variance of m errors {el.....em}. It is easily shown
by calculations analagous to those of section 5.1 that replacing absolute
residuals by sample standard deviations has the effect of changing the

asymptotic covariance matrices (5.1), (5.4) and (5.5) to

Pseudo-likelihood : {(2 + k) + 2/(m - 1)} {4N £(.8)} "} ;
(5.7) Logarithn method : m var { log (s2) } {4N £(B.0)) " :

Weighted absolute residuals : {m &/ (1 - 5)}) (N f(B.B)}_l.

where 6* = var (sm). Table 3 contains the asymptotic relative efficiencies of
using sample standard deviations to using transformations of absolute residuals
for various values of m when the errors are standard normal. The values in the
table for T(x) = x2 and x indicate that if the data are approximately normally
distributed, using sample standard deviations can entail a loss in efficiency
with respect to using residuals if m is small. For substantial replication (m
2 10), using sample standard deviations produces a slight edge in efficiency
with respect to weighted absolute residuals for T(x) = x.

The second column of Table 3 shows that for the logarithm method, using
sample standard deviations surpasses using residuals in terms of efficiency
except when m = 2 and is more than twice as efficient for large m. In its raw

form, log |r is very unstable because, at least occasionally, lril x 0,
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producing a wild "outlier” in the regression. The effect of using sample
standard deviations is to decrease the possibility of such inliers; the sample
standard deviations will be likely more uniform, especially as m increases.
The implication is that the logarithm method should not be based on residuals
unless remedial measures are taken. The suggestion to trim a few of the
smallest absolute residuals before using this method is clearly supported by
the theory; presumably, such trimming would reduce or negate the theoretical
superiority of using sample standard deviations.

Table 4 contains the asymptotic relative efficiencies of weighted squared
sample standard deviations and logarithms of these to weighted squared
residuals under normality of the errors. The first column is the efficiency of
Raab’'s method to pseudo-likelihood, and the second column is the efficiency of
the Rodbard and Frazier method to pseudo-likelihood. The results of the table
imply that using the Raab and Rodbard and Frazier methods, which are popular in
the analysis of radioimmunoassay data, can entail a loss of efficiency when
compared to methods based on weighted squared residuals. Davidian (1986) has
shown that the Rodbard and Frazier estimator can have a slight edge in
efficiency over the weighted squared residuals methods for some highly
contaminated normal distributions. From (5.7), the squared residual methods
will be more efficient than Raab’'s method in the limit. Also note that the
entries for T(x) = x and log x in Table 3 for m = ® are the reciprocals of the
first row of Table 2 and that the entries for last row of Table 4 are 1.0;
thus if both N and m grow large all the methods yield the same results.

Table 4 also addresses the open question as to whether Raab’s method is
asymptotically more efficient than the Rodbard and Frazier method for normally
distributed data. The answer is a general yes, thus agreeing with the
Monte-Carlo evidence available when the variance is a power of the mean. The

results of this section suggest that in the case of assay data containing pairs

)
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for which only Y, . is observed, an estimator for 8 combining estimation based

ij
on residuals for the observations for which Xy is known and on standard
deviations otherwise in an appropriately weighted fashion would offer some
improvement over the methods currently employed; see Carroll, Davidian and

Smith (1986).

6. DISCUSSION

In Section 4 we constructed a general theory of regression-type estimation
for 8 in the heteroscedastic model (1.1). This theory includes as special
cases common methods described in Section 3 and allows for the regression to be
based on absolute residuals from the current regression fit as well as sample
standard deviations in the event of replication at each design point. Under
various restrictions such as symmetry or small o, when the variance function g
does not depend on B, we showed in Sections 4 and 5 that we can draw general
conclusions about this class of estimators as well as make comparisons among
the various methods.

When employing methods based on residuals, one should weight the residuals
appropriately and iterate the process. There can be large relative differences
among the methods in terms of efficiency. Under symmetry of the errors,
squared residuals are preferable for approximately normally distributed data,
but this preference is tenuous, these can be highly non-robust under only
slight departures from normality; methods based on logarithms or the absolute
residuals themselves exhibit relatively more robust behavior. For the small
amount of replication found in practice, using sample standard deviations

rather than residuals can entail a loss in efficiency if estimation is based on

the squares of these quantities or the quantities themselves. For the
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logarithm method based on residuals, trimming the smallest few absolute
residuals is essential, since for normal data using sample standard deviations
is almost always more efficient than using residuals, even for a small number
of replicates. Popular methods applications such as radioimmunoassay based on
sample means and sample standard deviations can be less efficient than methods
based on weighted squared residuals. In some instances, the precision with
which we can estimate 8 depends on the relative range of values of the mean
responses, not thein actual values, so that immediate implications for design
are suggested.

Efficient variance function estimation in heteroscedastic regression
analysis is an important problem in its own right. There are important

differences in estimators for variance when it is modeled parametrically.
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APPENDIX A. PROOFS OF MAJOR RESULTS

We now present sketches of the proofs of the theorems of Section 4. Our
exposition is brief and nonrigorous as our goal is to provide general insights.

In what follows, we assume that

172

(A.1) N = 0,(1);

9 -8

under sufficient regularity conditions it is possible to prove (A.1). Such a
proof would be long, detailed and essentially noninformative; see Carroll and

Ruppert (1982a) for a proof of N1/2 consistency in a special case.

Sketch of proof of Theorem 4.1: From (4.1), a Taylor series, the fact that E [
T{di(ﬂ)} ] = Mi and laws of large numbers, we have

A A A

-172 a
(4.2) 0 = N25 | (H/V)IT{A,(B) - M{(n.8.8)] + o (1)

By the arguments of Ruppert and Carroll (1980) or Carroll and Ruppert (1982a),
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(A.3) NV25) (M V)T, (B,) - T{d,(8)}]

- VAL ) T 0B - 4)) + 0,

1/2

= B3. (p ) + Op(l).

Applying this result to (A.2) along with a Taylor series in Hi gives

-1/2 1/2,4
0=N ET=1 Cy+ (Byny+ By ) N 7(B - B)

n-n
- B, y N/2|( + 0 (1),
L] e 9 p
which is (4.2). a

Theorem 4.2 follows by a similar argument; in this case the representation

(A.3) is unnecessary.

Sketch of proof of Theorem 4.3: We consider Theorem 4.2; the proof for Theorem
4.1 is similar. Recall here that (3.4) holds. In the following, all

derivatives are with respect to the mean By and the definitions of Ci and Mi

are as in (4.4).

1/2 max

Assumption (iv) implies that N 1<1 <N

I?i - uil -2, 0 so that a Taylor

series in n, 0 and 7;. gives

V2] IR -172 -1/2 . T _
(A.4) By yN [ 56 ] =N 2?:1 ¢y N 2?:1("1"1’v1)(Y1- Hy)
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v - o 172 - -
Since Yi- -~k =0 g(ui.zi.e) €. AN g(ui.zi.e) €. where €. is the mean

of the errors at x,, we can write the last two terms on the right-hand side of

i

(A.4) as

(A.5) 2': e;.(ay )+ 9 ,C)

for constants {q, .} By assumption (v), since e, has mean zero, (A.5)
1.3 ie

converges in probability to zero if E(Zi-ci) = 0, which holds under the
assumption of symmetry. Thus, (A.5) converges to zero which from (A.4)
completes the proof. Note that if we drop the assumption of symmetry, from

172,42

(A.5) the asymptotic normal distribution of N°" (8 - 8) will have mean

-1 -
p-lin {2 By N5 (£,.Cq, 5 ). 0

APPENDIX B. CHARACTERIZATION OF RESTRICTED MAXIMUM LIKEL THOOD

Let B* be a generalized least squares estimator for B. Assume first that
g does not depend on B. Let the prior distribution for the parameters wn(83,0,0)
be proportional to a_l. The marginal posterior for 6 is hard to compute in
closed form for nonlinear regression. Following Box and Hill (1974) and Beal
and Sheiner (1986), we have the linear approximation
Fxy.B) % £(x;.B,) + f50x;.B,) "(B-B,).
Replacing f(xi.B) by its linear expansion, the marginal posterior for 6 is

proportional to
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(), g2(0)) /2

o5 P(8) (Det S(6))

(B.1) p(08) = 75— where

oa(0) = (%-p)7'3)_ 12 7 g%(z,.5,.9).
Se(8) = N'3)_ £5(x, BIF5(x, B / 8°(2,.5,.0).

and where Det A = determinant of A. If the variances depend on f, we extend
the Bayesian arguments by replacing gi(e) by g(zi.B*.e).
Let H be the hat matrix H evaluated at B, and let h,, = h  (B,.0). From

(3.1), pseudo-likelihood solves in (8.,0)

1 1

(B:2) 3} [r2/{o%e%(2,.5,.0)}] . =3 »
ve(zi,B ,8) ve(zi.B*.B)

i=1

Since H is idempotent, the left hand side of (B.2) has approximate expectation

1 - p/N

(B.3) N .
ve(zi,ﬁ*.ﬁ) (1- hii)

i=1

To modify pseudo-likelihood to account for loss of degrees of freedom, equate
the left hand side of (B.2) to (B.3). From matrix computations as in Nel

(1980), this can be shown to be equivalent to restricted maximum likelihood.
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Table 1

Description of Some Methods for Variance Function Estimation

. Maximum Likelihood Normal theory maximum likelihood in B, o, 6.
Pseudo-1likelinood Norma]l theory maximum likelihood when B is set
to current value. When i{terated, equivalent
to maximum likelihood if the variance does not
depend on B.
Weighted Squared Regress squared residuals on the variance,
Residuals function, weight inversely with squared current

variance estimate.

Weighted Absolute Regress absolute residuals on the standard
Residuals deviation function, weight inversely with current

variance estimate.

Logarithm Method Regress logarithm of absolute residuals on log of
standard deviation function. Be wary of near
zero residuals.

Restricted Maximum Pseudo-likelihood corrected for leverage.
Likelihood Maximizes marginal posterior for noninformative
prior.

All of the preceding except Restricted Maximum Likelihood have analogues
formed by replacing absolute residuals by sample standard deviations in the
case of replication. The following are based on the mean function or design
being fully or partially unknown and are often used in assays.

Rodbard and Frazier Regress log sample standard deviation on log
sample mean, where the variance function depends
on B only through the means.

Modified Maximum Modified functional maximum likelihood (equation
Likelihood (2.5)). where variance function depends on 8 only

through means.

Sadler and Smith Same as Modified Maximum Likelihood, but means
estimated by sample means.
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Yy Table 2
;!
Yy
Asymptotic relative efficiency of appropriately weighted regression methods
Y
N based on a function T of absolute residuals and the method based on
.\
logarithms of absolute residuals with respect to appropriately weighted ]
‘t
K regression methods based on squared residuals for underlying contaminated
X normal error distributions with distribution function F(x) = (1 - a)®(x) +
|\
ad(x/3).
i@
y T(x)
\
: c?ntamination 2/3 1/2 173
raction a X X X x log x
J‘
<
b
. 0.000 0.876 0.772 0.693 0.606 0.405
§ 0.001 0.948 0.841 0.756 0.662 0.440
4
0.002 1.016 0.906 0.816 0.715 0.480
. 0.010 1.439 1.334 1.216 1.075 0.720
g 0.050 2.035 2.100 1.996 1.823 1.220
;
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Table 3

Asymptotic relative efficiency of regression methods based on a function T

of sample standard deviations relative to using regression methods based on

a function T of absolute residuals under normality for T(x) (weighted

methods).

w N

%

0.500
0.667

0.750

LN

0.889

0.900

1.000

e

1.320

1.932
1.984

2.467
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Table 4

Asymptotic relative efficiency of regression methods based on a function T
of sample standard deviations relative to regression methods based on

weighted squared residuals under normal errors.

T(x)
2
m X log x
2 0.500 0.203
3 0.667 0.405
1Y
4 0.750 0.535 _
5 0.800 0.620 '
6 0.833 0.680
\
7 0.857 0.723 X
W
N~
8 0.875 0.757 .
9 0.889 0.783
10 0.900 0.804 0
o 1.000 1.000 -
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